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Abstract

Proper orthogonal decomposition (POD) technique (or the Karhunan Loéve procedure)
has been used to obtain low dimensional dynamical models of many applications in en-
gineering and science. In principle, the idea is to start with an ensemble of data, called
snapshots, collected from an experiment or a numerical procedure of a physical system. The
POD technique is then used to produce a set of basis functions which spans the snapshot
collection. When these basis functions are used in a Galerkin procedure, they yield a fi-
nite dimensional dynamical system with the smallest possible degrees of freedom. In this
context, it is assumed that the physical system has a mathematical model, which may not
be available for many physical and/or industrial applications. In this paper, we consider
the steady state Rayleigh-Bénard convection whose mathematical model is assumed to be
unknown, but numerical data are available. The aim of the paper is to show that, using the
obtained ensemble of data, POD can be used to model accurately the natural convection.
Furthermore, this approach is very efficient in the sense that it uses the smallest possible
number of parameters and thus is suited for process control. Particularly, we consider two
boundary control problems: (a) tracking problem and (b) avoiding hot spot in a certain
region of the domain.
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2 Modeling and Control of Physical Processes using POD

1 Introduction

There are many families of patterns for which it is possible to obtain a useful systematic char-
acterization. Often, the motivation is that the family is of low dimension, that is, in some sense,
any given member of the family might be represented by a small number of parameters. These
types of families of patterns occur frequently in both nature and in the literature. Such examples
include turbulent flows [1, 2, 3, 4], image processing [5, 6], data compression [7], human speech [8],
and human faces [9]. The technique applied in these applications is known as the proper orthog-
onal decomposition (POD), although it also goes by other names such as the Karhunen-Loéve
decomposition [10], principal component analysis [11], and the Hotelling transform [12].

POD seems to have been first proposed [13] in 1901 and then again [14] in 1933. Since its
introduction, the method has received much attention as a tool to analyze complex physical
systems. One such important application was the attraction of spatial organized motions in fluid
flows. Theodorsen [15] and later Townsend [16] observed and indicated that there are large-scale
organized motions embedded in turbulent shear flows. Lumley [1] used POD as an unbiased way
for extracting structures from turbulent flows. Other applications of POD include channel flows
[17, 18], square-duct flows [19], and shear flows [20, 21]. Other scientists have also applied the
POD technique to fluid related problems. For instance, POD has been applied to the Burgers’
equation [22], the Ginzburg-Landau equation and the Bénard convection [23]. Ly and Tran [24]
have used POD to simulate and solve an optimal control problem for fluid flows in a horizontal
chemical vapor deposition reactor. In addition, Banks, del Rosario and Smith [25] have applied
POD to design feedback control for a thin shell model. The goal of the approach is to represent
an ensemble of data (called snapshots), obtained from physical experiments or from detailed
numerical simulations, in terms of an optimal coordinate system. That is, the snapshots can
be generated by a smallest possible set of basis functions. Among the optimality properties is
the fact that, used in conjunction with the Galerkin method, the POD yields an optimal set of
basis functions in the sense that the resulting truncated system of ODE’s captures the maximum
amount of kinetic energy among all possible truncations of the same order.

In general, to implement numerical methods such as POD procedure used together with the
Galerkin method, finite element, finite volume, or spectral method, for applications in engi-
neering or science it is assumed that the physical system can be described by a mathematical
model (in general, a nonlinear distributed parameter system with boundary/initial conditions).
The governing equations are usually derived based on some simplified assumptions about the
physical system. On the other hand, many applications in engineering or science are complex
enough that a mathematical description is either not possible or when a model is obtained it
can’t be implemented without undue complications. For example, the degree of freedom of dis-
tributed parameter systems is essentially infinite and the relevant mathematical theory is either
too complicated or is still lacking (in the case of nonlinear distributed parameter system) to be
implemented in an industry. In this study, we consider a physical process, whose mathematical
model is assumed not to be available, but data can be collected from the system. For example,
in a physical setting, data can be collected from thermal images or from thermocouples. Our pri-
mary goal is to show that the characteristic features, extracted from the collected data using the
POD procedure, can be used to model the physical system efficiently and accurately. Moreover,
due the optimality of the POD technique, this approach guarantees that the number of parame-
ters used to represent the physical process is smallest possible. Consequently, process control for
such system becomes apparent. For our physical application, we consider the Rayleigh-Bénard
convection problem. Here, the governing equations are used only for the purpose of generating
an ensemble of data. The classical Rayleigh-Bénard problem offers a first approach to highly
complicated convection flow. Natural convection is both a challenging and an interesting subject
due to the coupling of the fluid flow and the energy transport. It has been extensively studied
in the literature because of its importance to many engineering applications and because it is
often found to be the controlling mechanism in many natural occuring processes. The numerous
applications are found, for instance, in meteorology, geophysics, crystal growth in microprocessor
manufacturing, and building heat transfer. An excellent overview of this subject can be found
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in [26].

More specifically, we consider in this paper a mixed convection in a square cavity heated
on one wall and cooled on the opposite wall. It 1s well known that in such a configuration, for
moderate Rayleigh number, the fluid flow is characterized by a single large cell; the fluid ascends
along the hot wall, descends along the cold wall, and turns at the opposite end of the cavity.
For small Rayleigh numbers the flow is weak and heat is transferred by conduction across the
fluid. However, with increasing Rayleigh number this flow becomes unstable (see, e.g., [27]).
As noted above, thermal convection is the result of the coupling between the fluid flow and
heat transport. However, in this study, the collected ensemble of data consists of only partial
information, namely, the thermal data. Using this ensemble of thermal numerical data, the POD
expansion produces an “optimal” compressed description of that ensemble. This description is a
truncated series expansion in terms of a set of basis functions. As an evaluation of the success
of the procedure, we project data from outside of the set of snapshots onto the set of optimal
basis functions. Even in this case, the relative errors were remarkably good (less than 3%). In
addition, we also show that the resulting eigenfunctions and coefficients associated with each
eigenfunction can be used to solve effectively two boundary control problems. One application is
the tracking problem of finding the thermal boundary condition so that the isotherms inside the
cavity match with a prescribed temperature distribution. The other problem is to determine the
hot wall temperature so that certain region inside the cavity stayed below a given temperature.
These studies offer an important first step to modeling and real-time control of complex physical
systems.

The organization of the paper is as follow. We describe in §2 the proper orthogonal decompo-
sition procedure. The physical problem and snapshot construction are described in §3. Section
4 describes the computation of the POD basis functions, their uses in modeling convective mo-
tion, and error analysis. Finally, applications to two practical boundary control problems are
discussed in §5.

2 The Proper Orthogonal Decomposition

Let U;(X), i = 1,2,...,N denote the set of N observations (also called snapshots) of some
physical process taken at position X = (z,y). The average of the ensemble of snapshots is given

by

U=<U>= %ZUZ»(&‘) (2.1)

i=1

We form new ensemble by focusing on deviations from the mean as follows:
Vi= Ui~ U (22)

We wish to find an optimal compressed description of the sequence of data (2.2). One description
of the process is a series expansion in terms of a set of basis functions. Intuitively, the basis func-
tions should in some sense be representative of the members of the ensemble. Such a coordinate
system, which possesses several optimality properties (to be discussed in the sequel), is provided
by the Karhunen-Loéve expansion, where the basis functions ® are, in fact, admixtures of the
snapshots and are given by:

N
®=> aVi(%). (2.3)
i=1
Here, the coefficients a; are to be determined so that ® given by (2.3) will most resembles the
ensemble {V;(X)}}Y,. More specifically, we look for a function ® to maximize

N

A (2:4)

i=1
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subject to
(@, ®)=[|2]* =1,

where (-,-) and || - || denote the usual L? inner product and L%-norm, respectively.
It follows that (see, e.g., [24]) the basis functions are the eigenfunctions of the integral equation

/C(i,i’)@(i”)dfé’ = A®(X) (2.5)
where the kernel is given by
N
1
CE ¥) =+ D Vil®Vi(X) (2.6)
i=1

Substituting (2.3) into (2.5) yields the eigenvalue problem:
N
Z Ll-ja]' = /\ai (27)
j=1

where L;; = %(Vi, Vi) is a symmetric and nonnegative matrix. Thus, we see that our problem
amounts to solving for the eigenvectors of an N x N matrix where IV is the size of the ensemble
of snapshots. Straightforward calculation (see also [24]) shows that the cost functional

N

1

EY B = (08, 8) =\
i=1

which is maximized when the coefficients a;’s of (2.3) are the elements of the eigenvector corre-
sponding to the largest eigenvalue of L.

Remarks. Alternatively, we can consider the discrete Karhunen-Loéve expansion to find an
optimal representation of the ensemble of snapshots. In the two-dimensional case, each sample
of snapshots U;(z,y) (defined on a set of n x n nodal points (z,y)) can be expressed as an n?
dimensional vector 1; as follows:

u;1
u;2

ul-j

.
L Win2 |

where 1;; denotes the jth component of the vector u;. Here, the discrete covariance matrix of
the ensemble 1 is defined as [12]:

Cg = B{(di —mg)(i — mg)"}, (2.9)
where
my = F{d} (2.10)
is the mean vector, F is the expected value. Equations (2.9) and (2.10) can be replaced by:
L[
Ca = lz_; ﬁZﬁZT] — mgmj
and
S
mu - N ' ula
=1

2 2

respectively. The size of the covariance matrix is now of dimension n? x n?, where n? is the
number of nodal points (or pixels of the samples). The eigenvector corresponding to the largest
eigenvalue of Cyj is the dominant POD mode. However, this approach is inhibitely expensive,
especially when the samples are of higher dimensions, because one has to solve a very large

eigenvalue problem.
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3 Rayleigh-Bénard Convection and Snapshots’ Construc-
tion

In this section, we consider the steady state problem of Rayleigh-Bénard system in a square
cavity. It is well known that if the Rayleigh number exceeds a certain critical value, buoyancy-
driven thermal cellular convection, combined with an increase in the heat flux through the fluid
layer, will begin. The mathematical formulation described below is used solely for the purpose
of generating the numerical data (snapshots) to be used in the POD procedure.

3.1 Rayleigh-Bénard Convection

Let Q be the rectangular cavity {(z,y) | 0 < 2 < L, 0 < y < L} in IR? which is filled with
fluid. The top, I',.,, and bottom, I',.., walls are insulated, the left wall, I'.,, is maintained at
a constant cold temperature 7 while the right wall, I',,,,, is heated with a parabolic profile
ﬂ%ly([/ —y) + Ty, where T1 > Ty (see Figure 1).

u=v=0

insulated -

T=T 0 ~—=— y=v=0

I

Figure 1: Dimensionalized Problem Definition of Rayleigh-Bénard Convection

We assume that the fluid is viscous, incompressible and that the flow is laminar. Under these
assumptions, the governing equations for the system are given by (see, e.g., [26]):

Continuity:
V-id=0, (3.1)
Momentum: .
paa—‘; +pii - Vi = =V P + pgjB(T — Tp) + uV7i, (3.2)
Energy:
pep 66_3 + pepti - VT = V2T, (3.3)

where 1 = [u,v]T, T and p represent the fluid velocity, temperature and pressure respectively;
p stands for the dynamic viscosity, £ the thermal conductivity, ¢, the specific heat, p the density,
[ the volume expansion constant, g the gravity and ; the vertical unit vector.

The hydrodynamic and thermal boundary conditions on the fixed surfaces are:
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e At the top and bottom walls of the cavity

u=v=0
or . (3.4)
on -~
o At the left wall
u=v=0
(3.5)
T= TOa
e At the right wall
u=v=0
(3.6)
4Ty — Tp)
T: L2 y(L—y)—‘r-jjo7
The initial conditions on 2 are:
ii(z,,0) = @, y)
(3.7)

T(z,y,0) =Tz, y).

We next rescale the equations (3.1)-(3.3) to obtain the dimensionless forms. Let’s denote by

epp?Bg(Ty — To) L3
HE

Ra =

the Rayleigh number and
)
K

Pr =

the Prandtl number. We now substitute the following relations

vV RaPr ~
—u

i = T = (T, —To)T + Ty
pcp L
ukv RaPr ~ pep L2 -
P=———P t = ———t
pep L kv RaPr
r =Lz y= Ly

in equations (3.1)-(3.3) and in the boundary and initial conditions (3.4)-(3.7), then rename
the variables [0, T, P, &, §, t] as [d, T, P, z, y, t] respectively, to obtain the following non-
dimensionalized system of governing equations:

V.-ia=0, (3.8)
od . L - 9 )
7E+7U~Vu:—VP+'ij+V u, (3.9)

T . ) .
75+7U~VT: VT, (3.10)
T
u=v= g—ﬁ:O on I',,, and T',.., (3.11)
u=v=0, T=0 onTl,.,, (3.12)

u=v=0, T=4y(l—y) on Ty, (3.13)
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. pep L
u(z,y,0) = —F——=1u (z,
(z,9,0) w/RaPr (z,y)
(3.14)
T = T° — T
(0.0,0) = 7= (T%(2,) = ).
where v = %. The domain now becomes a unit square cavity. Consequently, the steady-state
system of governing equations are given by (see Figure 2):
V.-u=0, (3.15)
yi Vi = —VP+~;T + Vi, (3.16)
yi - VT = V2T, (3.17)
oT
u=v= 7 = 0 onTl,,andT,., (3.18)
u=v=0, T=0 on/T.,, (3.19)
u=v=0, T=4y(l-y) on 'y (3.20)
u=v=0
insulated -]
-
B S—
B S—
|
1
u=v=0| T=0 ~— u=v=0
|
B S—
B S—
-
insulated i
u=v=0
e S 1 ********** E

Figure 2: Non-dimensionalized Problem Definition of Rayleigh-Bénard Convection

3.2 Construction of Snapshots

We assume that the temperature on the left-hand-side of the cavity is cold at 300°K and the
fluid has the following properties:

¢p = 5.24 x 1037 p=97 x 1070
p=102 Kk =580 x 10731
B=1010 x 107°% L=0.10m,

Then for each heat intensity 77 applied to the right wall of the cavity, there are two corresponding
dimensionless numbers, the Prandtl number Pr and the Rayleigh number Ra. And for the above
parameters, these constants have values:

pr=H2 _ 3876
R
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and
CpP2;39L3
UK

Ra = (Ty — 300) = 921.9(T3 — 300).

Tt is well known [26] that when the Rayleigh number Ra (and equivalently 77 ) exceeds a certain
critical value, buoyancy driven thermal convection cells will begin to form in the cavity. In this
paper, we restrict our flow to laminar regime and, consequently, we restrict Rayleigh numbers to
be less than 10°. This corresponds to values of the right wall temperature T} in the range from
300°K to 1385°K.

The ensemble of snapshots (see Figure 3) used in this paper was obtained numerically by
utilizing a commercial fluid dynamics package called FIDAP version 7.6. The steady-state system
of non-dimensionalized equations (3.15)-(3.20) was discretized using 81 quadrilateral (9-nodal
quadratic) elements. The resulting discrete nonlinear equations were solved for the velocity
fields, temperature distributions, and pressure using values of Rayleigh numbers, Ra, equal to
1,000, 5,000, and from 10,000 ...200,000 in increments of 10,000. The corresponding values
of the right wall temperature, 7}, ranges from 301.08°K to 516.94°K. Only 22 snapshots of
temperature distributions were used in the POD procedure. In addition, we generate four extra
temperature snapshots corresponding to Ra equals to 500, 71,250, 115,000, and 250,000 for
reasons to be discussed later.

Ra=1.0E3 Ra=6.0E4

Ra=1.3E5 Ra=2.0E5

Figure 3: A sample of Calculated Snapshots of Temperature Distribution

4 Construction of POD Basis Functions

Let Uf4(X), i = 1,2,...,22 denote the set of 22 temperature snapshots as described in §3.2
above. Here, we use the superscript Ra to denote the dependency of the snapshots on the
Rayleigh number. For convenience in notation, the superscript is sometimes omitted in the
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following discussion. The average of the ensemble of snapshots is given by
12
7 Ra/gz
= = — . ) 4.1
U=<U> 7 ZEZI U (X) (4.1)

We form new ensemble by focusing on deviations from the mean as follows:
Vi=U; = U, i=1,2,...,22. (4.2)

We then apply the POD procedure to fluctuations of the temperature from the mean, V;’s. The
coefficients a;’s of the POD basis functions ®j,, defined by (2.3), are the entries of the kth
eigenvectors corresponding to the kth largest eigenvalue of the N x N covariance matrix L (see
§2):

1

L;; = —
722 /g

Vi(R)V; (%) d.

Since the covariance matrix is a symmetric and nonnegative matrix, the eigenvalues, Ay are real
and nonnegative. We arrange the eigenvalues in decreasing order as Ay > Aa > -+ > Aaa > 0.
Thus @, is the basis function corresponding to the largest eigenvalue. A representative of these
basis functions is given in Figure 4.

POD Basis #1 POD Basis #2
y J

0 |
Q e N

O

POD Basis #3 POD Basis #4

Figure 4: A sample of Calculated POD Basis Functions

o

Any snapshot in the ensemble can be represented as a linear combination of the basis functions
as follows:

N
Ut =0+ af*®, (4.3)
k=1
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where

aft = (&, UR —U). (4.4)

and N = 22.
We next investigate at how much error is introduced by truncating the series (4.3). That is,
we now consider the approximation

M
Ui » U+ af'®, (4.5)
k=1

where M < N(= 22). Tt is well known that (see, e.g., [24]) the expansion (4.5) is optimal. In
particular, among all linear combinations, the POD is the most efficient, in the sense that, for a
given number of modes M, the POD decomposition will capture the most possible kinetic energy.
In fact, one way to quantify the error of the approximation is by computing the relative error as:

o _ U=k
107

Figure 5 shows the relative errors of all 22 snapshots against reconstructed solutions using
M POD modes where M = 1, 2, 3, and 4. We note that for M = 3 the relative error is already
less than 0.5%.

(4.6)

0.08
—— 1-POD MODE|
0.07 o—-o 2-POD MODE]
»—— 3-POD MODE
—— 4-POD MODE
0.06¢ 1
5
Qo0.05 1
o
]
Yo.04 1
'_
<
W 0.03-
@
0.02 1
0.01- 1
@ ! . /*/Wé

2 4 6 8 10 12 14 16 18 20 22
22 SNAPSHOTS RECONSTRUCTED USING POD

Figure 5: Relative Errors of Each Snapshots Plotted for Various Values of M

The crucial question is, therefore, how to choose M, a priori, so that (4.5) is a good approx-
imation to (4.3). As already indicated in several publications (see, e.g., [24]), Ef‘il X;, where
A; denotes the ith eigenvalue of the covariance matrix L, represents the average kinetic energy
contained in the first A modes. Hence, to capture most of the energy of the system contained
in the N POD elements, it suffices to choose M so that Zf‘il Ai & Zf\;l Ai. In fact, the ra-
tio Zf‘il )\Z-/Zf\;l A; yields the percentage of the total kinetic energy in the N POD elements
that is contained in the first M POD elements. Since the eigenvalues are in descending order,
A1 > Ay > -+ > Ay > 0, one can reasonably expect to achieve a high percentage of the total ki-
netic energy with M sufficiently smaller than N. In our case, for an ensemble of 22 snapshots, an
approximation with M = 1 yielded a ratio of .9334. However, when M = 3, this ratio increases
to 0.9996 resulting in a truly significant computational efficiency.

To be useful in developing both open loop and feedback control strategies, we now demon-
strate that by using the same POD basis functions, we are able to model the Rayleigh-Bénard
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system for Rayleigh number equals to 500, 71,250, and 250,000. We note that the values 500 and
250,000 are not in the range used orginally to compute the ensemble of 22 snapshots. To com-
pute the POD approximation for each new Rayleigh number, we fit, for each mode &, the original
Rayleigh dependent coefficients af“, by a cubic spline interpolation. We then evaluate the cubic
spline polynomial at Ra = 500, 71,250, and 250,000 to obtain the corresponding coefficients
ala’s. The approximations, as computed by the POD expansion using M = 3, are compared
against the FIDAP solutions in Figure 6. The plots show a remarkably good agreement. Also
Figure 7 shows the relative errors plotted against the number of POD modes M. For M = 3 the
maximum relative error is already less than 3%. The approximation, U + 22:1 &fa@k is then
used to compute the POD solutions.

N N
L L
o o
¥ol To)
1 Il
@® @
@ @
POD SOLUTION FIDAP SOLUTION
< <
L L
1) o)
N [N
— —
~ ~
1 1
@ o
o o
FIDAP SOLUTION
To) To)
L LU
T9) 0
o o
1l 1
o S
o [0 d
POD SOLUTION FIDAP SOLUTION

Figure 6: Comparison Between POD and FIDAP Solutions for Rayleigh Numbers Not Belonging
to the Ensemble of Snapshots

5 Boundary Control Applications

Optimal control problems have been a subject of interest to experimenters and designers for a
long time. More recently, flow control has become of substantial interests to mathematicians
and computational scientists. Perhaps the most spectacular example of successful flow control is
that of aerodynamic control. Here, one determines wing flaps, throttle, etc., so that an aircraft
executes a desired maneuver. In this and numerous other examples, the control is computed
using either sophisticated mathematical models involving partial differential equations and/or
ordinary differential equations or simple empirical rules. In this section, we will demonstrate
the effectiveness of using the POD expansion of the ensemble of data to control the temperature
distribution inside the cavity without the utilization of a mathematical model.
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0.12
¢—= Ra=5.0E2 BELOW SNAPSHOT RANGE
s=—=8 Ra=7.125E4 WITHIN SNAPSHOT RANGE
0.1r e——>o Ra=2.5E5 ABOVE SNAPSHOT RANGE | 4

o

)

L
\

RELATIVE ERRORS
=}
o
=

0.02

1 15 2 25 3 35 4 4.5 5 55 6
NUMBER OF POD BASIS

Figure 7: Relative Errors Plotted Against M for Rayleigh Numbers Not Belonging to the En-
semble of Snapshots

Desired Ra | Calculated Ra (using 3 POD modes) | Relative Error
500 500 1.504e-07
71,500 71,284 4.835e-04
115,000 114,939 5.317e-04
250,000 249,296 2.817e-03

Table 1: Optimal Solutions to the Temperature Tracking Problem

5.1 Tracking Problem

Let T4(X) denote a desired temperature distribution inside the cavity. In our case, Ty is the
numerical solution to the dimensionless steady-state system (3.15)-(3.20) using FIDAP. We want
to find the right-wall temperature (or equivalently the Rayleigh number), so that the POD
expansion given by

3
UPm U+ af"®, (5.1)
k=1

is “close” to Tg. This boundary control problem can be formulated as finding the Rayleigh
number, Ra, to minimize the cost functional

J(Ra):/ |U3 — Ty|? dX,
Q

where U3 is given by equation (5.1) and Q is the cavity domain. This unconstrained optimization
problem is solved using a combination of golden section search and parabolic interpolation.
The results are tabulated in table 1. Here, we are tracking four different temperature profiles
corresponding to Rayleigh numbers equal to 500, 71,500, 115,00 and 250,000.

5.2 Avoiding Hot Spots Problem

In many applications including the fabrication of microelectronic circuits, it is desirable to avoid
“hot spots” along bounding surfaces, i.e., places where the temperature peaks might occur (see,
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e.g., [28]). This is necessary in order to avoid melt-down or structural failures. In our case,
we want to find the right wall temperature so that the temperature inside the shaded region in
Figure 8 is not greater than the dimensionless temperature 0.1. That is, we find the temperature
on the right wall (equivalently the Rayleigh number) so that to minimize the objective

N
- a/— Ra
J(Ra) = ;max{Uf (X;)—0.1,0} + 07"

where Uf1%(%;) are the values of the temperature of the computed solution using 3 POD mode
at the nodal points X;, which is inside the shaded region in Figure 8. Ny = 120 is the number
of nodal points inside the shaded region. The term IRT‘ﬁ is included in the cost to achieve the
balance between the desired objective and the expended energy to obtain the goal. The results
are plotted in Figure 9. The optimal value of the Rayleigh number is 8046.6893 and is compared
against two non-optimal solutions. We note that in the non-optimal solution corresponding to
Ra = 3056.6893 the right hand corner (darker shade) is above the dimensionless temperature
0.1. At the other extreme, namely Ra = 13046.6893, the dimensionless temperature is below 0.1
but at the expense of a higher heat input at the right wall.

Avoiding hot spot in the region by maintaining
temperature cooler than a desired temperajure

Figure 8: Avoiding Hot Spots Problem Formulation
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3046.6893

Ra

NON-OPTIMAL SOLUTION

Ra=8046.6893

OPTIMAL SOLUTION

Ra=13046.6893

h\

NON-OPTIMAL SOLUTION

Figure 9: Avoiding Hot Spots Optimal Solution Compared Against Two Non-Optimal Solutions
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